Purpose: Authentication Not Encryption

Authentication Requirements:
\square Masquerade - Insertion of message from fraudulent source
\square Content Modification - Changing content of message
\square Sequence Modification - Insertion, deletion and reordering sequence
\square Timing Modification - Replaying valid sessions

Background Theory

- Message Digest or "Fingerprint"
\rightarrow Condensed Representation
\rightarrow Easy to generate for a given file.
- Computationally infeasible to produce two messages with same message digest
- Impossible to recreate a message given a message digest.
- Data Integrity and Comparison Checking
\rightarrow Message Integrity Validation

Applications:

One-way hash functions

- Public Key Algorithms
- Password Logins
- Encryption Key Management
- Digital Signatures
- Integrity Checking
- Virus and Malware Scanning
- Authentication
- Secure Web Connections
- (PGP, SSL, SSH, S/MIME)

Variants

- MD4 and MD5 by Ron Rivest $(1990,1994)$
- SHA-0, SHA-1 by NSA $(1993,1995)$
- RIPEMD-160 (1996)
- SHA-2 (2002-224, 256, 385, 512)
- Whirlpool
- Tiger
- GOST-3411
- SHA-3
- Winner selected from solicitations in 2012

Basic Hash Function Diagram

NOTE: No Encryption with sender and destination holding single security key (S).
Cryptography and Network Security by Stalling

Message Diagram

[^0]
SHA-1 (160 bit message) Algorithm Framework

- Step 1: Append Padding Bits....

Message is "padded" with a 1 and as many 0's as necessary to bring the message length to 64 bits fewer than an even multiple of 512.

- Step 2: Append Length....

64 bits are appended to the end of the padded message. These bits hold the binary format of 64 bits indicating the length of the original message.

- http://www.herongyang.com

SHA-1 Framework Continued

- Step 3: Prepare Processing Functions....

SHA1 requires 80 processing functions defined as:

$$
\begin{array}{lrl}
\mathrm{f}(\mathrm{t} ; \mathrm{B}, \mathrm{C}, \mathrm{D}) & =(\mathrm{B} \text { AND C) OR ((NOT B) AND D) } & (0<=\mathrm{t}<=19) \\
\mathrm{f}(\mathrm{t} ; \mathrm{B}, \mathrm{C}, \mathrm{D}) & =\text { B XOR C XOR D } & (20<=\mathrm{t}<=39) \\
\mathrm{f}(\mathrm{t} ; \mathrm{B}, \mathrm{C}, \mathrm{D}) & =(\text { B AND C) OR (B AND D) OR (C AND D) } & (40<=\mathrm{t}<=59) \\
\mathrm{f}(\mathrm{t} ; \mathrm{B}, \mathrm{C}, \mathrm{D}) & =\text { B XOR C XOR D } & (60<=\mathrm{t}<=79)
\end{array}
$$

- Step 4: Prepare Processing Constants....

SHA1 requires 80 processing constant words defined as:

$$
\begin{array}{ll}
\mathrm{K}(\mathrm{t})=0 \times 5 \text { A827999 } & (0<=\mathrm{t}<=19) \\
\mathrm{K}(\mathrm{t})=0 \times 6 \text { ED9EBA1 } & (20<=\mathrm{t}<=39) \\
\mathrm{K}(\mathrm{t})=0 \times 8 \text { F1BBCDC } & (40<=\mathrm{t}<=59) \\
\mathrm{K}(\mathrm{t})=0 \times \text { CA62C1D6 } & (60<=\mathrm{t}<=79)
\end{array}
$$

- http://www.herongyang.com

SHA-1 Framework Continued

- Step 5: Initialize Buffers....

SHA1 requires 160 bits or 5 buffers of words (32 bits):

$$
\begin{aligned}
\mathrm{H} 0 & =0 \times 67452301 \\
\mathrm{H} 1 & =0 \times E F C D A B 89 \\
\mathrm{H} 2 & =0 \times 98 B A D C F E \\
\mathrm{H} 3 & =0 \times 10325476 \\
\mathrm{H} 4 & =0 \times C 3 D 2 \mathrm{E} 1 \mathrm{FO}
\end{aligned}
$$

- http://www.herongyang.com

SHA-1 Framework Final Step

■ Step 6: Processing Message in 512-bit blocks (L blocks in total message)....

This is the main task of SHA1 algorithm which loops through the padded and appended message in 512-bit blocks.
Input and predefined functions:
$M[1,2, \ldots, L]$: Blocks of the padded and appended message
$f(0 ; B, C, D), f(1, B, C, D), \ldots, f(79, B, C, D): 80$ Processing Functions
$\mathrm{K}(1), \ldots, \mathrm{K}(79)$: 80 Processing Constant Words
H0, H1, H2, H3, H4, H5: 5 Word buffers with initial values

- http://www.herongyang.com

SHA-1 Framework Continued

■ Step 6: Pseudo Code....
For loop on $\mathrm{k}=1$ to L

$$
(\mathrm{W}(0), \mathrm{W}(1), \ldots, \mathrm{W}(15))=\mathrm{M}[\mathrm{k}] / * \text { Divide } M[k] \text { into } 16 \text { words */ }
$$

For $\mathrm{t}=16$ to 79 do:

$$
W(t)=(W(t-3) \text { XOR } W(t-8) \text { XOR } W(t-14) \text { XOR } W(t-16)) \lll 1
$$

$A=H 0, B=H 1, C=H 2, D=H 3, E=H 4$
For $\mathrm{t}=0$ to 79 do:
TEMP $=A \lll 5+f(t ; B, C, D)+E+W(t)+K(t) E=D, D=C$, $C=B \lll 30, B=A, A=$ TEMP
End of for loop

$$
\mathrm{H} 0=\mathrm{H} 0+\mathrm{A}, \mathrm{H} 1=\mathrm{H} 1+\mathrm{B}, \mathrm{H} 2=\mathrm{H} 2+\mathrm{C}, \mathrm{H} 3=\mathrm{H} 3+\mathrm{D}, \mathrm{H} 4=\mathrm{H} 4+\mathrm{E}
$$

End of for loop

Output:
H0, H1, H2, H3, H4, H5: Word buffers with final message digest

- http://www.herongyang.com

Message Diagram

[^1]
SHA-1 Message Digest

The message digest of the string:
"This is a test for theory of computation"

4480afca4407400b035d9debeb88bfc402db514f

Cryptanalysis and Limitation

- Key Premises for Hash Functions:

1. Impossible to re-create a message given a fingerprint

2. Collision Free

- SHA-1 failure using brute force attack in 2^{80} operations
- Collision failure found in 2005 in 2^{33} operations

[^0]: Cryptography and Network Security by Stalling

[^1]: Cryptography and Network Security by Stalling

